60 research outputs found

    Multifractality in a broad class of disordered systems

    Full text link
    We study multifractality in a broad class of disordered systems which includes, e.g., the diluted x-y model. Using renormalized field theory we analyze the scaling behavior of cumulant averaged dynamical variables (in case of the x-y model the angles specifying the directions of the spins) at the percolation threshold. Each of the cumulants has its own independent critical exponent, i.e., there are infinitely many critical exponents involved in the problem. Working out the connection to the random resistor network, we determine these multifractal exponents to two-loop order. Depending on the specifics of the Hamiltonian of each individual model, the amplitudes of the higher cumulants can vanish and in this case, effectively, only some of the multifractal exponents are required.Comment: 4 pages, 1 figur

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    Master Operators Govern Multifractality in Percolation

    Full text link
    Using renormalization group methods we study multifractality in percolation at the instance of noisy random resistor networks. We introduce the concept of master operators. The multifractal moments of the current distribution (which are proportional to the noise cumulants CR(l)(x,x)C_R^{(l)} (x, x^\prime) of the resistance between two sites x and xx^\prime located on the same cluster) are related to such master operators. The scaling behavior of the multifractal moments is governed exclusively by the master operators, even though a myriad of servant operators is involved in the renormalization procedure. We calculate the family of multifractal exponents ψl{\psi_l} for the scaling behavior of the noise cumulants, CR(l)(x,x)xxψl/νC_R^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent for percolation, to two-loop order.Comment: 6 page

    Effective RFID-based object tracking for manufacturing

    Get PDF
    International audienceAbstract Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes by simplifying the retrieval, tracking and usage of highly specialised components. RFID has long been used to gather a history or trace of object movements, but its use as an integral part of the automated control process is yet to be fully exploited. Such (automated) use places stringent demands on the quality of the sensor data collected and the method used to interpret that data. In particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects in customised production with the use of RFID. In particular, this work presents approaches for making best use of RFID data in this context. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes

    Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    Full text link
    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian transport in irregular geometries. Finally, we show that all these features can be qualitatively described in terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure

    Exact solution of diffusion limited aggregation in a narrow cylindrical geometry

    Full text link
    The diffusion limited aggregation model (DLA) and the more general dielectric breakdown model (DBM) are solved exactly in a two dimensional cylindrical geometry with periodic boundary conditions of width 2. Our approach follows the exact evolution of the growing interface, using the evolution matrix E, which is a temporal transfer matrix. The eigenvector of this matrix with an eigenvalue of one represents the system's steady state. This yields an estimate of the fractal dimension for DLA, which is in good agreement with simulations. The same technique is used to calculate the fractal dimension for various values of eta in the more general DBM model. Our exact results are very close to the approximate results found by the fixed scale transformation approach.Comment: 18 pages RevTex, 6 eps figure

    Dynamics of Fractures in Quenched Disordered Media

    Full text link
    We introduce a model for fractures in quenched disordered media. This model has a deterministic extremal dynamics, driven by the energy function of a network of springs (Born Hamiltonian). The breakdown is the result of the cooperation between the external field and the quenched disorder. This model can be considered as describing the low temperature limit for crack propagation in solids. To describe the memory effects in this dynamics, and then to study the resistance properties of the system we realized some numerical simulations of the model. The model exhibits interesting geometric and dynamical properties, with a strong reduction of the fractal dimension of the clusters and of their backbone, with respect to the case in which thermal fluctuations dominate. This result can be explained by a recently introduced theoretical tool as a screening enhancement due to memory effects induced by the quenched disorder.Comment: 7 pages, 9 Postscript figures, uses revtex psfig.sty, to be published on Phys. Rev.

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and xx^\prime of the network, the llth multifractal moment scales as MI(l)(x,x)xxψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure
    corecore